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New High-Frequency Circuit Model for
Coupled Lossless and Lossy
Waveguide Structures

NIELS FACHE aND DANIEL DE ZUTTER

Abstract — A coupled transmission line model is proposed describing the
two fundamental modes of any two-conductor (above a ground plane or
shielded) dispersive or nondispersive lossless waveguide system. The model
is based on a power—current formulation of the impedances but does not
need an a priori supposition about the power distribution over each
transmission line. In the second part of the paper the analysis is extended
to lossy structures and to the multiconductor situation. Impedance calcula-
tions for a typical coupled microstrip configuration are used to illustrate
the approach.

I. INTRODUCTION

HE DESIGN and the accurate modeling of intercon-
nections have gained increasing importance due to
their presence in high-speed electronics and MMIC’s. For
the calculation of the dispersion characteristics of mi-
crostrip and stripline multiconductor configurations a very
large nuniber of papers have been published. We refer the
reader to [1]-[8]. A comprehensive review of papers up to
October 1985 can be found in [8]. Another type of printed
board is the wire board [9]. The quasi-TEM analysis for
this structure and the full-wave calculation of the disper-
sion characteristics have been presented in [10] and [11].
In order to include the behavior of these interconnec-
tions in circuit simulators which are able to handle these
different interconnection types together with (nonlinear)
loads and drivers, it is imperative to come to a suitable
(coupled) transmission line representation of the intercon-
nections. This problem for a single dispersive waveguide
structure is thoroughly discussed in [12] and [13]. The
coupled waveguide case, however, is treated by a limited
number of authors. In order to obtain a complete equiva-
lent transmission line representation not only the dispersion
characteristics must be calculated, but also the characteris-
tic impedances. This important issue has been extensively
discussed in the literature, e.g., in [1], [2], [5], [6], and [14].
In [4] Jansen proposed an equivalent coupled transmission
line model for a coupled microstrip configuration based on
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Typical cross section of an (a) open and (b) closed coupled
hybrid waveguide configuration.

Fig. 1.

an a priori given distribution of the total propagating
power over the strips.

In the first part of this paper a new coupled transmis-
sion line model is proposed describing the two fundamen-
tal modes of any two-conductor dispersive or nondisper-
sive lossless waveguide system. The two conductors are
placed above a ground plane or are shielded (see Fig. 1).
Our model does not require any assumptions regarding the
power distribution. Although it is also based on a
power—current formulation for the impedances, it is shown
that our approach only coincides with the results obtained
in [4] in the quasi-TEM limit. ‘As our model is derived
from first principles only, it remains valid for any
frequency.

In the second part of the paper, our model is extended
to lossy structures and to the multiconductor situation.
Finally, to exemplify our approach, we analyzed a typical
coupled microstrip configuration. The impedance calcula-
tions were implemented in two different ways: a- first
implementation uses the formulas derived in this paper; a
second implementation uses the formulas proposed in [4].

II. GENERAL REPRESENTATION OF THE FIELDS IN A
HYBRID WAVEGUIDE

Fig. 1 shows typical cross sections of hybrid waveguide
configurations. The geometries under consideration are
independent of the x direction. The perfectly conducting
lines 1 and 2 are embedded in a multilayered lossless
dielectric. In the sequel our interest will be focused on the
two fundamental eigenmodes propagating along the x axis
of such structures. Starting from Maxwell’s equations it
can be shown that the total fields due to these fundamen-

0018-9480,/90,/0300-0252$01.00 ©1990 IEEE



FACHE AND DE ZUTTER: NEW HIGH-FREQUENCY CIRCUIT MODEL

tal modes can be written as [12]

E(x’ Y, Z) = Vv,l(x)Et,l(y’ Z)+ ROIv,l(x)El,l(y’ Z)

+V, 2(x) 2(y,z)+ROIU,z(x)E,’z(y,z)
H(x,y,z)= Ivl(x) 1()’72)"‘ 1(x)/R0H1)1(y,z)
+1,,(x)H, 5(y, 2)

v.z(x)/RoHl.z()’,Z)- 1)

The electric and magnetic fields in (1) are the modal fields
which depend only upon the transversal coordinates y and
z. The index ¢ refers to the transversal -y and z compo-
nents while the index / refers to the longitudinal x compo-
nent. The voltages V, , and currents I, , (J=1,2) are the
field voltages and field currents and R0 is the free-space
impedance. The field voltages and currents satisfy [12]

dv, ;(x) .

N 1 N E )
and

dl, (x) ' .

““‘dx—=—JB,~/Z,V,,,,(X), J=12. (3)

The propagation constants of each mode are denoted by B,
(7 =1,2). The general solution of (2) and (3) is

Vu,, = Cjexp(— j,Bjx)+ Djexp(jﬁjx)
L, ,=(1/Z)[Cexp(~ jBx) - Dyexp (iBx)] (4)

where C; and D, are arbitrary constants. As we first
restrict the analysis to lossless structures, the transverse
modal fields and the impedances Z; (j=1,2) can be
chosen to be real, while the long1tud1nal fields are purely
imaginary. For this lossless situation it can be shown [15],
starting from the Lorentz reciprocity theorem, that the
eigenmodes 1 and 2 are power orthogonal, i.e.,

ffS(E,,1 X H/%)-dS = ffS(E,,2 X H%)-dS=0. (5)

The total power propagated by the structure is the sum of
the power propagated by each individual mode.

III. CircuiT REPRESENTATION OF THE EIGENMODES

It is our purpose to find a suitable and consistent circuit
representation of the eigenmodes described in the above
section in terms of a coupled transmission line (CTL)
representation. An elaborate analysis for a single conduc-
tor by Brews has shown that a circuit representation in the
form of a single transmission line is possible but that,
generally speaking, it is impossible to give a circuit inter-
pretation to both the current and the voltage on this
transmission line equivalent. Moreover, depending upon
whether a special circuit meaning is assigned to the voltage
or to the current, a different value of the characteristic
impedance is found. The reader is referred to [14] for
further clarification and for an example showing the differ-
ent characteristic impedance values obtained depending on
whether a circuit meaning is assigned to the total longitu-
dinal current or to the center voltage in a simple microstrip
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configuration. It is only in the low-frequency or quasi-static
limit that a circuit meaning can be assigned to both the
voltage and the current, as confirmed by the fact that the
different impedance curves coincide in this limit.

In the sequel the following choices are made. As circuit
currents in our CTL representation we choose the total
longitudinal currents flowing along conductors 1 and 2. It
has been extensively argued in the literature [4], [5] that
this choice must be preferred if the coupled transmission
line representation has to be used in conjunction with
TEM models of loads and drivers. A second choice is that
the total complex power propagated by the CTL model
must be the same as in the actual waveguide configuration.

From the expression for the rnagnetic field in (1) the
total longitudinal currents along conductors 1 and 2 are

I(x) = [/;H,,l-dl]lv,l(x)+ [/1H,,2-~d1]1v,2(x)
L(x) = [fZH,,l-dz]zv,l(x)Jr [./;H,J-dl]lv’z(x). ©)

The integrations in (6) extend over the boundaries of the
conductors as shown in Fig. 1. I; and I, represent the
circuit currents in the CTL representation. Introducing a
shorthand notation for the integrals, (6) can be rewritten
as

I(x)= ind, 1 (x)+ i1, 5(x)

L(x) =ileU,1(x)+i2ZIv,2(x)' (7)
The circuit voltages V; and ¥, are still unknown, but as the
total fields are a superposition of the fields coming from

each mode, these voltages should be expressed as a linear
combination of the field voltages:

V1(x) = ’)11Vu,1(x)+ Uleu,z(x)
Vz(x) = UZIV;;,l(x)_i_ Uszv,z(x)-

The coefficients v,, (i, j=1,2) are still unknown.

We now introduce the second choice on which our
circuit model is based, namely the equivalence of the total
propagating power. Taking into account the power orthog-
onality of the modes (eq. (5)), the total power propagated
by the coupled waveguide structure is

(8)

P =1/2[Vv,11;:1 [ (Eax H3)-as +7,.0,

./f(E X H%)-dS|. (9)

The integration in (9) extends over the total cross section §
of the waveguide structure. Introducing the following nota-

tion:
ff (E,,xH}*)-dS,  j=1, (10)
(9) can be rewritten as
P =1/2(P1Vv,11f1 + Psz,zlvfz)- (11)

Starting from (7) and (8), the total power propagated by
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the CTL model is found to be
P =1/2[V;;.1Iuﬂf1(vui11 + Uyiy) + Vu,llvfz(vnilz + Uyin)
'Vvv,l‘lvﬂjl( P Uzzizl) + Vv,zluﬂfz(vlziu + Uzzizz)]

(12)
where we have explicitly taken into account the real nature
of i, ;. The equivalence of (11) and (12) yields the following
equations:

Ui t 0yl = py
Uiplia + Vi = Py

Vigin + Uiy =0

(13)

In order to obtain (13) we have taken into account the fact
that the equality between (11) and (12) must also be
satisfied for any linear combination of the two modes.
From (13) it follows that v,, can be found in terms of i, :

Vipipy F Ugin = 0.

U1 = Pring /A
Uy =~ Pqinp/Bi
V== Pain/Ai
Uy = Paiyy /A (14)
where

(15)

To get a first CTL model it now suffices to introduce (4)
into (7) and (8), taking into account (14). It is found that

Ai =iy —ipyin-

I/1 s Ai - '
Vzgi; =l _p;’llilv//gi [Crexp (= jByx) + Dyexp (jBix)]
o| e e (- )+ Do (o)
(16)
and
B |2 e - ) Dyesp (o)
L(x)| |in/z, | P JBix)~ Dyexp (B
2/ 25 ) '
+ ;72;22 [Crexp(— jByx) — Dyexp (jB,x)].

(17)

IV. SELF- AND MUTUAL IMPEDANCES OF THE
Circuit MODEL

A characteristic impedance Z, , of a conductor i (i=1,2)
for an eigenmode j (j =1,2) propagating in the positive x
direction is defined as the ratio of the contribution of
eigenmode ; to the circuit voltage at conductor i to the
contribution of mode j to the circuit current in conductor

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 38, NO. 3, MARCH 1990

i. From (16) and (17) it follows that Z,  is given by

Zy = (prinZ,)/(in Ai)

Zy= = (p2inZ,) /(i Al)

Zy == (pii1nZy) /(i AP)

Zyp = (P2inZ,)/(inhi). (18)
The inconvenience of the above expressions is that i, , p,,
and Z, (i, j=1,2) are quantities which do not follow
directly from the numerical analysis of the problem; e.g., it
is always possible to multiply E, ; in (1) with an arbitrary
constant provided V, ; is divided by that same constant.
As indicated in [12], the fields in (1) satisfy Maxwell’s
equations for any value of Z , in (4). The numerical calcu-
lations start from a representation of the unknown cur-
rents on the conductors 1 and 2, as will be illustrated in
Section VIII for a coupled strip configuration. In solving
the eigenvalue problem, the propagation constants 8, and
B, are found as eigenvalues. The eigenvectors of the prob-
lem yield the eigencurrent distributions on each conductor
and this for each eigenmode. The total longitudinal current
flowing in the positive x direction on conductor i at x =0
due to eigenmode j is defined as I, and follows directly
from the numerical solution of the problem. From these
currents the electric and magnetic fields corresponding to
each mode can be found. We denote these fields by E,, |
and Hy, , (j=1,2). The E in (1) is the sum of E,,, and
E,,, and H in (1) is the sum of H,, ; and H,, ,. With
these fields it is possible to numerically determine the
power associated with eigenmode j propagating in the
positive x direction. This power is denoted by P (j=12)
and is given by

Pj zl/zfj;(EtOt,j (19)

From (7), (8), and (11) (but only applied to modes propa-
gating in the positive x direction) it can be found that the
following relations hold between #,, and 1, ;:

X H*

tot,

)-ds.

111 il/
— = j=1.2 (20)
Iy iy
and between p; and P:
2Pj/l‘[zj|2=pjzj/!izj|2' (21)

Substituting (20) and (21) in (18) leads to
Zy, =2 P1y,) /(1 AI)
Ziy==2Ply)/ (1, A1)
Zy=~2PI,)/(IAl)
Zy=2(P,11;) /(1 AT) (22)

with

Al =11y — 11y, (23)

The above values for the Z,, no longer contain the un-

known wave impedances Z; and Z,. To obtain (22) and

(23) we again took the real character of I, , and i, into

account. From (22) it is easy to prove that the ratio of the
characteristic impedance of conductor 1 to the characteris-
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tic impedance of conductor 2 is the same for each eigen-
mode, i.c.,

Zu_Zy_Iubn

=2 . (24)
ZZl ZZ2 111112

The above equations also show that this ratio can be
expressed in terms of the longitudinal currents. Tripathi [1]
shows that (24) results directly from the reciprocity which
must be satisfied by the transmission line equations.

Using (22) and (24) the first CTL representation (egs.
(16) and (17)) can be cast in its final form:

V; 1
V;Ei; =‘ — ]12/]22‘[‘4167119(- JB1x)+ Byexp (jBx)]
+' !
- 111/121
'[AzeXP(- JByx)+ B2exp(jB2x)] (25)
and
I(x) :' 1/Zy,
Iz(x) —1,/(1,Z,)
) [AleXP(_ JBix)— BleXP(J;le)]
+ /2,
— Ly /(1 Zy) i

) [AzeXP (= jBax) — Byexp (JB,x)]. (26)
It is important to remark that the ratios of the I, currents
and the Z,, values used in (25) and (26) are independent of
an arbitrary multiplicative factor involved in the choice of
the eigencurrents.

V. DISTRIBUTION OF THE POWER OVER
EacH CONDUCTOR
We will now investigate what the consequences of the
above CTL model are on the distribution of the propagat-
ing power over the conductors 1 and 2. Here again we only
consider waves propagating in the positive x direction;
hence B, and B, must be set to zero in (25) and (26).
These equations then show that the power propagated by
each transmission line in the CTL model and denoted by
P,  (j=1,2)is given by
Pg,1 = |A1|2/(2Zu) + |A2|2/(2Z12)
+(A,43/Z,,) exp [ - Jj(B— Bz)x]
+(Af4,/Zy)exp [ = j(By = By)x]  (27)
and ‘
Pg,2 = (|A1‘21122)/(22211222) + (|A2|21121)/(22221221)
+ (41450, 1) /(2115 Z)]
cexp [ — j(B1— B,)x]
+ [(Al*AZ112111)/(2121122221)]

-exp [ — j(Br— By)x]. (28)
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In each of the above expressions the first term represents
the contribution from eigenmode 1, the second term repre-
sents the contribution from eigenmode 2, and the last two
terms represent power coupling or cross-power ‘terms.
Defining P,, as the part of the power associated with
eigenmode j (j=1,2) and transmitted by conductor |
(i=1,2) in the absence of the other eigenmode, we have

P, = |A1|2/(ZZ11)
Py = |A1|21122/(242211222) ’
P, = |A2|2/(221:1)
Py = AT} /(22 13). (29)
The total power P, (j=1,2) associated with each mode j
in the absence of the other mode is given by
Py+Py=P
P+ Py=P"P, (30)

while the total power P propagated in the presence of both
eigenmodes is

P=P,+P,+ P, +Py. (31)
The fact that the power coupling terms in (27) and (28)
disappear from the total power budget is a consequence of
the power orthogonality of the modes. The two relations

given by (30) allow us to eliminate the coefficients 4; and
A, from (29). This leads to

P1111[2Z
Y
P1[21112
Pa==7ar
P2123L112
Po==—y
P2111122
Py= AT (32)

The expressions in (32) finally lead to the identity
Py, /Py =Py, /Py,. (33)

This relation expresses that, e.g., i 30 percent of the power
of eigenmode 1 is propagated by line 1 and 70 percent by
line 2, it automatically follows that 70 percent of the power
of eigenmode 2 will be propagated by line 1 and 30 percent
by line 2. This reasoning holds only if each eigenmode is
considered separately. If both eigenmodes are present at
the same time, part of the power oscillates between line 1
and 2 as a function of the longitudinal distance along the
waveguide structure. The typical length involved in this
process is the coupling length between the modes as the
power coupling terms in (28) and (29) contain a phase
factor depending upon the difference of the propagation
constants of modes 1 and 2.

In the past Jansen [4] has proposed the following expres-
sion for the partial power values P, :

1

P,=(1/2) [ [S (E,x H})-dS. (34)
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In (34) E, represents the total electric field associated with
eigenmode j, where, as above, only a wave propagating in
the positive x direction is considered. The magnetic field
H,  is defined as the magnetic field due to the current on
conductor i while the current on the other conductor is
zero, again for eigenmode j. It can be shown that the
values of P,, obtained by applying (34) are exact in the
low-frequency or quasi-TEM limit. The expression (34)
seems to be inspired by a closely related one, i.e.,

P, =072 [[(E, xHY)-as. (35)

In (35) the definition of H, , is the same as in (34), and
E, | is defined as the electric field for eigenmode j due to
the voltage on conductor i, while the voltage on the other
conductor is zero. It is obvious that the use of voltages
restricts the validity of the definition to the low-frequency
or quasi-TEM limit. In that case the longitudinal field
components are negligibly small with respect to the
transversal ones, and both the electric and magnetic field
can be derived from a potential and are perpendicular to
each other at each point of the cross section. In that
particular case (35) is exact. Since a typical full-wave
analysis using the spectral-domain method yields the total
electric field and the partial magnetic fields, an obvious
extension of (35) is given by (34). In the quasi-TEM limit,
however, (34) and (35) yield the same result.

We will now show which fields are involved in the
expressions for P; (32) proposed in this paper. To this end
the field currents and voltages in (1) are replaced by circuit
quantities using (7) and (8&). This leads to

E(x,y,z)= [( VB, 1~ U21Ez,2)/AU] Vi(x)
+ [( —vpE  + UllEt,Z)/AU] Va(x)
+ [Ro(izzEm - i21E1,2)/Ai] I(x)
+ [Ro( —inE,+ i11E1,2)/Ai] L(x) (36)
and
H(x,y,z)= [(izsz,1 - i21H,’2)/Ai] I(x)
+[(- inH,  + iuIIz,z)/Ai] L(x)
+[1/Ro(vypHy 1 — vy H, ) /A0] Wy (x)
+[1/Ro(~ v H; )+ U11H1,2)/AU] V(x).
(37)
The quantity Av is given by
= p1pa /A (38)
The last equality in (38) can be derived from (14). Starting

from (25) and (26) and using (36) and (37) and the

definition of P, ,, it is found that P, is given by

- [[(B,,, <l ) as. (9)

The index a indicates that the fields in (39) represent some
kind of average. For conductor 1 they are given by
E, ., = Z1J(022Ez,1 - v21Et,2)IIJ/AU

Ha,l,j = (i22Hz,1 - i211{t,2)111/Ai‘

Av = vy309 — V12V

(40)

For conductor 2 we have

E.o, = Zz,(“ Y U11Ez,2)Izj/AU
Ha,2,] = (_ i12Ht,1+ iqu,z)Izj/Ai- (41)

In order to be able to compare (39) with either (34) or (35),
it is necessary to recast all quantities in (39) in terms of
quantities which follow directly from the numerical solu-
tion of a particular problem. To do so we again use [, ,
Z, E , and H,, , which have already been defined,
and also V,, =Z, 1, . It can easily be shown that (40) and

(41) can be rewritten as
Ea,l,, = Zl](I/22Etot.1 - VzlEtot,z)Ilj/AV
Ha,l,_/ = (122Htot,1 - IZlHtot,Z)Ilj/AI
E, o ,=Zy (= VuE 1t ViiEin) D, /AV

Ha‘z,,= (_IIZHtot.1+IllHtot.2)I2j/AI’ (42)

The quantity A7 is defined in (23) and AV is defined as in
(38). Compared with (34) and (35), the actual fields used
here to calculate P,, are well-chosen combinations of the
fields of both modes, whereas in (34) and (35) only the
(partial) fields due to a certain mode are used. It is again
possible to prove that (42) is equivalent to (34) and (35) in
the quasi-TEM limit. The proof is beyond the scope of this
paper. The equalities in (24), which are a direct conse-
quence of the reciprocity, are automatically satisfied in our
model. These equalities will no longer be satisfied if one
starts from (34) for calculating the partial powers P, .

V1. EXTENSION OF THE CIRCUIT REPRESENTATION
TO L0OSSY STRUCTURES

The main difference between the analysis for lossless
waveguides and lossy ones resides in the fact that the
power orthogonality (eq. (5)) is no longer satisfied and that
the cross-powers p,, defined by

f (E,,xHxX)-dS, i,j=12i# (43)

have to be introduced. Similar reasoning leads to the
following relations between v, , and i, :

vt + i = py

Upoith + Ui =P

P

Pa- (44)

These expressions replace the ones given by (13). As the
transversal currents can no longer be chosen to be real, we
have introduced the necessary complex conjugates. Solving
for v, gives

Uyqiys + Uiy =

Vit +Upid =

vy = (pi%h— pui%) /Ai*
u = (= piis + ppoifs ) /Ai*

vy = (= pyifi + pyi%) /Ai*

vy = (Paifh = puish)/Ai*.

(45)
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Using
Z,=Zuv, /i, (46)
the values of Z,, now turn out to be
Zy = (PihZy— praifiZy)/ (i AT¥)
Zy= (=P Zy+ ppi$ Zy) /(i Ai*)
Zn= (= pithZy+ praitiZy) /(i Ai*)
Zyy = (P2t Zy — puis Z,)/(in Ai*). (47)

The next step consists again in expressing all relevant
quantities in terms of values which directly follow from the
numerical solution of the problem. The relations which can
be used for that purpose are (21) and

2Pz//(Ik>§Ikz) = Pz,Z:/(ilfjiki)’
i,j,k=1,2 and i#j (48)
where the I, and P, are defined as before and P, is given

by

P, =1/2ffS(Em;,. xHE ), j*i.  (49)
Using (21) and (48), (47) can be rewritten as
Z, = 2P I3 — P13t ) /(1 ATY)
Z,,=2— P15 + PyI%) /(1 A*)
Zy= 2(_ P I3+ Plzlﬁ )/(IZIAI*)
Zzz=2(P21ff _lelf'z:)/(IzzAI*)- (50)

The CTL representation (25) and (26) for lossless lines
finally becomes

V 1
Viig =‘ —I35C, /L% [41exp(— jB1x)+ By exp (jBx)]
‘ 1
" 1 — I3C, /I
'[AzeXP(_ JByx)+ Bzexp(jﬁzx)] (51)
and '
I(x) =’ 1/Z,
L(x) - Ilgcl/(ll’szﬂ)
: [AleXP(_ JB1x)— By exp(jBlbx)]
1/7,,

- Iffcz/( 12*1‘222)

[ A,exp (— jByx) — Byexp (jBox)].

The coefficients C; and C, are given by ‘
Cy=[1=(Pu1it)/(P3)] /1= (P13t ) /(P 1S)]

Cy=[1—(Pul3) /(P I%)] /[1— (P I3s) /( Py 1 )153)

C, and C, introduce the correction of the CTL model in
the presence of losses while 8, and B, are now complex
propagation constants.

(52)
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VII. EXTENSION OF THE CIRCUIT MODEL TO
N CouPLED LINES

In this section we briefly deal with the extension of the
above CTL model to the case of the N fundamental modes
of a multiconductor waveguide. The equality between the
power propagated by the modes and the power propagated
in the CTL model leads to

1=N
Z vtjiz”jzpj’ j=‘—1,"',]\7
=1

1=N
> Uil k= Pk k#j and j,k=1,---,N (54)
=1

where

p,=/fS(E,><H,.*)-dS

Pa= f/S(Ej X H*)-dS. (55)

As for two coupled lines, we introduce the current I, P
which is the total longitudinal current flowing along con-
ductor i at x =0 due to eigenmode j. We also introduce
P;, the power propagated by eigenmode j at x =0, and
P, the cross-power due to the electric field of mode j and
the magnetic field of mode k, both taken at x = 0. It can

be shown that (54) is equivalent to

i=N
Z Vijli;‘=P/’ j=1’ N
=1

1=N
X V,Ir=P,, k#jand jk=1,--,N (56)
i=1

where the voltages V;; do not have a direct physical mean-
ing. Solving (56), the mathematical quantities V,; can be
determined, leading to the Z;; values using Z, =V, /I, ..
The final CTL model then becomes
j=N
Vz(x) = Z [(Zijlij)/(zljllj)]

j=1
-[Ajexp(— ijx]|+ Bjexp(j,B]x)]
Jj=N
Ii(x) = Z [I;j/(lljzlj)]
J=1
-[Ajexp(—jﬁjx)+Bjexp(ijx)]. (57)

VIIIL

In this section we consider the typical coupled mi-
crostrip configuration shown in Fig. 2. The value of 4 is
1 mm. This example is also discussed in [7]. Using the
space-domain Green’s function approach discussed in [16]
and [14], the eigenmode problem is solved. Numerical
calculation of the currents I,;, j=1,2, and of the powers
P, and P,, discussed in Section IV, leads to the impedances
Z,, (22). The solid lines in Fig. 3 show these impedances.
The first index i refers to the conductor, while the second

NUMERICAL EXAMPLE
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Fig. 2. A typical coupled microstrip conflguratlon (h=1 mm).
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Fig. 3. Characteristic impedances as a function of the frequency for the
configuration of Fig. 2. Solid lines: our results. Dashed lines: results
from Jansen’s definition (eq. (34)).

index j refers to the mode. Mode 1 corresponds to
the quasi-odd mode while mode 2 corresponds to the
quasi-even mode. We then calculated the characteristic
impedances using the power distribution proposed by
Jansen (eq. (34)). The differences between Jansen’s ap-
proach and ours increase as a function of frequency.
Special care was taken to perform all calculations in dou-
ble precision arithmetic, avoiding the possibility of differ-
ent results being generated by numerical imprecision. For
Z,, and Z,,, however, the difference remains very small.
As a check on relation (24), which is a consequence of the
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v as a function of the frequency using the power definition of
Jansen (eq. (34)) applied to the configuration of Fig. 2.

Fig. 4.

reciprocity, we calculated the following variable:

= [1 ~(Z1Z5,)/(Z12Zy) ‘ (58)

which must be zero. Fig. 4 shows y as a function of
frequency using Jansen’s definition (eq. (34)). This figure
clearly shows that the approach based on (34) yields a
correct circuit model only in the quasi-TEM limit.

IX. CONCLUSION

In this paper a new high-frequency model for N coupled
lossless and lossy waveguides was presented. A coupled
transmission line model of such structures, for both the
nondispersive and the dispersive case, was found based on
a power—current formulation of the impedances. To actu-
ally be able to determine these impedances, the full-wave
eigenmode problem for the waveguides under considera-
tion and for the N lowest eigenmodes must be solved. It
does not suffice to determine the propagation constants
belonging to each mode. One also needs the power distri-
bution over the total cross section of the waveguide be-
longing to each eigenmode. However, no supposition about
the power distribution over each separate conductor is
needed.

We have also shown, theoretically and by a typical
example, that our new approach coincides with previously
adopted approaches in the low-frequency limit but leads to
different circuit parameters for coupled waveguide struc-
tures at high frequencies. This will in turn influence the
values obtained in, e.g., crosstalk calculations, especially if
very high speed digital signals with a considerable high-
frequency content are involved.
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