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New High-Frequency Circuit Model for
Coupled Lossless and Lossy

Waveguide Structures

NIELS FACHE AND DANIEL DE ZU~ER

Abstract —A coupled transmission line model is proposed describing the

two fundamental modes of any two-conductor (above a ground plane or

shielded) dkpersive or nondfspersive Iossless wavegnide system. The model

is based on a power-current formulation of the impedances but does not

need an a priori supposition abont the power dktribntion over each

transmission line. In the second part of the paper the analysis is extended

to Iossy structures and to the multiconductor sitnation. Impedance calcula-

tions for a typical coupled microstrip configuration are used to illustrate

the approach.

I. INTRODUCTION

T HE DESIGN and the accurate modeling of intercon-
nections have gained increasing importance due to

their presence in high-speed electronics and MMIC’S. For

the calculation of the dispersion characteristics of mi-

crostrip and stripline multiconductor configurations a very

ku-ge number of papers have been published. We refer the

reader to [1]–[8]. A comprehensive review of papers up to

October 1985 can be found in [8]. Another type of printed

board is the wire board [9]. The quasi-TEM analysis for

this structure and the full-wave calculation of the disper-

sion characteristics have been presented in [10] and [11].

In order to include the behavior of these interconnec-

tions in circuit simulators which are able to handle these

different interconnection types together with (nonlinear)

loads and drivers, it is imperative to come to a suitable

(coupled) transmission line representation of the intercon-

nections. This problem for a single dispersive waveguide

structure is thoroughly discussed in [12] and [13]. The

coupled waveguide case, however, is treated by a limited

number of authors. In order to obtain a complete equiva-

lent transmission line representation not only the dispersion

characteristics must be calculated, but also the characteris-

tic impedances. This important issue has been extensively

discussed in the literature, e.g., in [1], [2], [5], [6], and [14].
In [4] Jansen proposed an equivalent coupled transmission

line model for a coupled rnicrostrip configuration based on
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Fig. 1. Typical cross section of an (a) open and (b) closed coupled
hybrid wavegnide configuration.

an a priori given distribution of the total propagating

power over the strips.

In the first part of this paper a new coupled transmis-

sion line model is proposed describing the two fundamen-

tal modes of any two-conductor dispersive or nondisper-

sive lossless waveguide system. The two conductors are

placed above a ground plane or are shielded (see Fig. 1).

Our model does not require any assumptions regarding the

power distribution. Although it is also based on a

power–current formulation for the impedances, it is shown

that our approach only coincides with the results obtained

in [4] in the quasi-TEM limit. As our model is derived

from first principles only, it remains valid for any

frequency.

In, the second part of the paper, our model is extended

to lossy structures and to the multiconductor situation.

Finally, to exemplify our approach, we analyzed a typical

coupled microstrip configuration. The impedance calcula-

tions were implemented in two different ways: a first

implementation uses the formulas derived in this paper; a

second implementation uses the formulas proposed in [4].

II. GENERAL REPRESENTATION OF THE FIELDS IN A
HYBRID WAVEGUIDE

Fig. 1 shows typical cross sections of hybrid waveguide

configurations. The geometries under consideration are

independent of the x direction. The perfectly conducting

lines 1 and 2 are embedded in a multilayered lossless

dielectric. In the sequel our interest will be focused on the

two fundamental eigenmodes propagating along the x axis

of such structures. Starting from Maxwell’s equations it

can be shown that the total fields due to these fundamen-
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tal modes can be written as [12]

J?(X, y, z) = vo,l(x)Et,l(y, z)+ Rol”,l(.x)E[,l(y, z)

+~u,2(~)~,,2(Y, z)+~o~.,2(~)~I,2 (Y>z)

H(x, y, z) = I“,l(x)ql(y,z)+ vu,l(x)/RoH,,l(y, z)

+~”,2(x)q2(Y7z)

+ v“,2(x)/RoH/,2(y, z). (1)

The electric and magnetic fields in (1) are the modal fields

which depend only upon the transversal coordinates y and

z. The index t refers to the transversal y and z compo-

nents while the index 1 refers to the longitudinal x compo-

nent. The voltages VU,, and currents lU ~ (j =1,2) are the

field voltages and field currents and ~. is the free-space

impedance. The field voltages and currents satisfy [12]

dVu, j(x)

dx
= – jpjzjI”, j(x), j=l,2 (2)

and

dIu,J (x)

dx
= – Mj\z,v.. J(x), j=l,2. (3)

The propagation constants of each mode are denoted by /31

(j= 1,2). The general solution of (2) and (3) is

Vu,, = Cl exp (– j~’x) + Djexp(j/3Jx)

I“,, = (1/Z, )[~exp( - j~,x) - Djexp(jBjx)] (4)

where Cj and DJ are arbitrary constants. As we first

restrict the analysis to lossless structures, the transverse

modal fields and the impedances Zj (j= 1, 2) can be

chosen to be real, while the longitudinal fields are purely

imaginary. For this lossless situation it can be shown [15],

starting from the Lorentz reciprocity theorem, that the

eigenmodes 1 and 2 are power orthogonal, i.e.,

The total power propagated by the structure is the sum of

the power propagated by each individual mode.

III. CIRCUIT l&PRESENTATION OF THE EIGENMODES

It is our purpose to find a suitable and consistent circuit

representation of the eigenmodes described in the above

section in terms of a coupled transmission line (CTL)

representation. An elaborate analysis for a single conduc-

tor by Brews has shown that a circuit representation in the

form of a single transmission line is possible but that,

generally speaking, it is impossible to give a circuit inter-

pretation to both the current and the voltage on this

transmission line equivalent. Moreover, depending upon

whether a special circuit meaning is assigned to the voltage

or to the current, a different value of the characteristic

impedance is found. The reader is referred to [14] for

further clarification and for an example showing the differ-

ent characteristic impedance values obtained depending on

whether a circuit meaning is assigned to the total longitu-

dinal current or to the center voltage in a simple microstrip

configuration. It is only in the low-frequency or quasi-static

limit that a circuit meaning can be assigned to both the

voltage and the current, as confilmed by the fact that the

different impedance curves coincide in this limit.

In the sequel the following choices are made. As circuit

currents in our CTL representation we choose the total

longitudinal currents flowing along conductors 1 and 2. It

has been extensively argued in the literature [4], [5] that

this choice must be preferred if the coupled transmission

line representation has to be used in conjunction with

TEM models of loads and drivers. A second choice is that

the total complex power propagated by the CTL model

must be the same as in the actual waveguide configuration.

From the expression for the magnetic field in (1) the

total longitudinal currents along conductors 1 and 2 are

The integrations in (6) extend over the boundaries of the

conductors as shown in Fig. 1. II and 12 represent the

circuit currents in the CTL representation. Introducing a

shorthand notation for the integrals, (6) can be rewritten

as

II(X) = illlu,l(x) + i121u,2(x)

12(x) =i2110,1(x)+ i22~u,z(x)+ (7)

The circuit voltages VI and V2 are still unknown, but as the

total fields are a superposition of the fields coming from

each mode, these voltages should be expressed as a linear

combination of the field voltages:

VI(X) = ull~,l(x)+ u12~,2(x)

V2(X) = U21V”,1(X)+ U22V”,2(X). (8)

The coefficients v,, (i, j =1,2) are still unknown.

We now introduce the second choice on which our

circuit model is based, namely the equivalence of the total

propagating power. Taking into account the power orthog-

onality of the modes (eq. (5)), the total power propagated

by the coupled waveguide structure is

[ LiP = 1/2 VU,lI;l (Et,l X ~,~) odS + Vu,21J2
s-

Jj( 1Ef,2 X IItj) . dS . (9)
,y

The integration in (9) extends over the total cross section S

of the waveguide structure. Introducing the following nota-

tion:

P]= jjs(Et, J ~ H*, ) “~’s, j=l,2 (lo)

(9) can be rewritten as

P = 1/2( plvu,lI;l + p2~,,21:2) . (11)

Starting from (7) and (8), the total power propagated by
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the CTL model is found to be

P = 1/2[ VU,lI”:l( Ullill + u21i21) + V“,110:2( u11i12+ u21i22)

i ) + VU,21u~2(u12i12+ u22i22)l. vu 21.*1( u12i11 + U22 21
,.

(12)

where we have explicitly taken into account the real nature

of iij. The equivalence of (11) and (12) yields the following

equations:

ullill + u21i21= PI

u12i12 + vzzizz = pz

u11i12+ u21i22= O

v12i11+ 022i21 = O. (13)

In order to obtain (13) we have taken into account the fact

that the equality between (11) and (12) must also be

satisfied for any linear combination of the two modes.

From (13) it follows that u,, can be found in terms of iZJ:

VII = p1i22/Ai

U21= – p1i12/Ai

VIZ = – p2i21/Ai

V22= p2i11/Ai (14)

where

Ai = i11i22 – i12i21. (15)

To get a first CTL model it now suffices to introduce (4)

into (7) and (8), taking into account (14). It is found that

v,(x) ““

V2(X) =
%:;;i [Clexp(- j&x)+ Dlexp( j&x)]

+ - ‘212’/!1 [C,exp(- j/32x)+ D2exp( jf12x)]
p2ql/Ai

(16)

and

II(x)

12(x)

i. From (16) and (17) it follows that Z,J is given by

Zll = (p1i22Z1)/(ill Ai)

Z12 = – (p2i21Z2)/(i12Ai)

Z21 = – (plilzzl)/(i21Ai)

Z22 = (p2i11Z2)/(i22Ai).

The inconvenience of the above expressions is

and Z, (i, j =1,2) are quantities which do

(18)

that i ,], P]2
not follow

directly from the numerical analysis of the problem; e.g., it

is always possible to multiply Et, ~ in (1) with an arbitrary

constant provided V(, ~ is divided by that same constant.

As indicated in [12], the fields in (1) satisfy Maxwell’s

equations for any value of Z, in (4). The numerical calcu-

lations start from a representation of the unknown cur-

rents on the conductors 1 and 2, as will be illustrated in

Section VIII for a coupled strip configuration. In solving

the eigenvalue problem, the propagation constants & and

& are found as eigenvalues. The eigenvectors of the prob-

lem yield the eigencurrent distributions on each conductor

and this for each eigenmode. The total longitudinal current

flowing in the positive x direction on conductor i at x = O

due to eigenmode j is defined as 1,, and follows directly

from the numerical solution of the problem. From these

currents the electric and magnetic fields corresponding to

each mode can be found. We denote these fields by Etot, 1

and H,O,,, (j= 1, 2). The E in (1) k the sum of Etot,l and

%,z$ and H in (1) iS the sum of %t, I and % z. With
these fields it is possible to numerically deterr&ne the

power associated with eigenmode j propagating in the

positive x direction. This power is denoted by P, (j= 1,2)

and is given by

p, = l/2JJ (~tot, J x %:t, J )-dS. (19)
s

From (7), (8), and (11) (but only applied to modes propa-

gating in the positive x direction) it can be found that the

following relations hold between il~ and 1,,:

I
lJ ill

—=_
12j i2j ‘

j=l,2 (20)

and between pj and PJ:

2P,/\ IZJ[2 = p, Z,/\iZJ12. (21)

Substituting (20) and (21) in (18) leads to

Z,, = 2( P1122)/(111 AI)

Z12 = –2(P2121)/(112A1)

Z21 = – 2( P1112)/(121 A1)

Z22 = 2( P2111)/(122 AI) (22)

with

AI= 111122– 112121. (23)

The above values for the Z,, no longer contain the un-

known wave impedances Z, and 2,. To obtain (22) and

+ ;:~2 [C2exp(- j~2x)- D2exp(j~2.x)] .

(17)

IV. SELF- AND MUTUAL IMPEDANCES OF THE

CIRCUIT MODEL

A characteristic impedance Z,, of a conductor i (i= 1, 2)

for an eigenmode j (_j = 1, 2) pr~pagating in the positive ~

direction is defined as the ratio of the contribution of (23) we again took the reai charact& of 1,, and i. ~ into

eigenmode j to the circuit voltage at conductor i to the account. From (22) it is easy to prove that &e ratio’~f the
contribution of mode j to the circuit current in conductor characteristic impedance of conductor 1 to the characteris-
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tic impedance of conductor 2 is the same for each eigen-

mode, i.e.,

Zll Z12 121122
——

Z21 = ~ = 111112“
(24)

The above equations also show that this ratio can be

expressed in terms of the longitudinal currents. Tripathi [1]

shows that (24) results directly from the reciprocity which

must be satisfied by the transmission line equations.

Using (22) and (24) the first CTL representation (eqs.

(16) and (17)) can be cast in its final form:

VI(X)
_ ~ 1,122[A,exp(- jfllx)+ Blexp( j~lx)]

v,(x) = 12

1
+

– 111/121

. [A2exp(- J3,x)+ B,exp(j/32x)]

and

II(x)

12(x)

l/zll
.

– ~12/(~22z21)

(25)

o[A2exp(- j~2x)- B2exp( j&x)]. (26)

It is important to remark that the ratios of the 1,, currents

and the Z,J values used in (25) and (26) are independent of

an arbitrary multiplicative factor involved in the choice of

the eigencurrents.

V. DISTRIBUTION OF THE POWER OVER

EACH CONDUCTOR

We will now investigate what the consequences of the

above CTL model are on the distribution of the propagat-

ing power over the conductors 1 and 2. Here again we only

consider waves propagating in the positive x direction;

hence B1 and Bz must be set to zero in (25) and (26).

These equations then show that the power propagated by

each transmission line in the CTL model and denoted by

Pg,, (j =1,2) is given by

Pg,l = lA112/(2Z11) + lA212/(2Z12)

+( AIA~/Z12)exp [– j(&-~2)x]

+( A~A2\Z11)exp[– j(~2– &)x] (27)

and

Pg,2 = (lA1121f2)/(2Z2 J:2) + (lA2121:1)/(2Z221;1)

+ [( A1A;112111)/(212 #22Z22)]

.exp[–j(&-~2)x]

+ [( ATA2112111)/(2121122 Z2J]

.exp[–j(~2 –&)x]. (28)
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In each of the above expressions the first term represents

the contribution from eigenmode 1, the second term repre-

sents the contribution from eigenmode 2, and the last two

terms represent power coupling or cross-power “terms.

Defining P,J as the part of the power associated with

eigenmode j (j= 1, 2) and transmitted by conductor i

(i= 1,2) in the absence of the other eigenmode, we have

Pll = lA112/(2Z1J

P21= lAJ21:2/(2z2J;2)

P12 = 1~212/(2%!)

P22 = lA2121:1/(2z221:J . (29)

The total power Pj (j= 1, 2) associated with each mode j

in the absence of the other mode is given by

Pll + P21 = PI

P12 + P22 = P2 (30)

while the total power P propagated in the presence of both

eigenmodes is

P= P11+P12+P21+P22. (31)

The fact that the power couplin~ terms in (27) and (28)

disappear from the total power budget is a consequence of

the power orthogonality of the modes. The two relations

given by (30) allow us to eliminate the coefficients Al and

A2 from (29). This leads to

P111112Z

’11 = AI -

P1121112
P21= – ——

A,r

P212L112
P12 = – ——

A,r

P2111122
P22 = —

AI ‘“
(32)

The expressions in (32) finally lead to the identity

PJP21 = p121/p22 . (33)

This relation expresses that, e.g., if 30 percent of the power

of eigenmode 1 is propagated by line 1 and 70 percent by

line 2, it automatically follows that 70 percent of the power

of eigenmode 2 will be propagated by line 1 and 30 percent

by line 2. This reasoning holds only if each eigenmode is

considered separately. If both eigenmodes are present at

the same time, part of the power oscillates between line 1

and 2 as a function of the longitudinal distance along the

waveguide structure. The typical length involved in this

process is the coupling length between the modes as the

power coupling terms in (28) and (29) contain a phase

factor depending upon the difference of the propagation

constants of modes 1 and 2.

In the past Jansen [4] has proposed the following expres-

sion for the partial power values P,,:

‘,J = (1/2) fj (EJ~~i,”j).dS. (34)
s
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In (34) E, represents the total electric field associated with

eigenmode j, where, as above, only a wave propagating in

the positive x direction is considered. The magnetic field

H,, ~ is defined as the magnetic field due to the current on

conductor i while the current on the other conductor is

zero, again for eigenmode j. It can be shown that the

values of P,, obtained by applying (34) are exact in the

low-frequency or quasi-TEM limit. The expression (34)

seems to be inspired by a closely related one, i.e.,

‘,, = (1/2)j~(El,j X Hl,”j) . dS. (35)

In (35) the definition of ~,, ~ is the same as in (34), and

E,,, is defined as the electrlc field for eigenmode j due to

the voltage on conductor i, while the voltage on the other

conductor is zero. It is obvious that the use of voltages

restricts the validity of the definition to the low-frequency

or quasi-TEM limit. In that case the longitudinal field

components are negligibly small with respect to the

transversal ones, and both the electric and magnetic field

can be derived from a potential and are perpendicular to

each other at each point of the cross section. In that

particular case (35) is exact. Since a typical full-wave

analysis using the spectral-domain method yields the total

electric field and the partial magnetic fields, an obvious

extension of (35) is given by (34). In the quasi-TEM limit,

however, (34) and (35) yield the same result.

We will now show which fields are involved in the

expressions for PiJ (32) proposed in this paper. To this end

the field currents and voltages in (1) are replaced by circuit

quantities using (7) and (8). This leads to

E(x> y, Z) = [(u,2Et,, – u21E,,2)/Au1~l(x)

+ [(– U12E,,1+ U11Et,2)/AU] V2(X)

+ [Ro(i22E1,1 – i21E1,2)/Az] ll(X)

+ [Ro( – i12E1,1+ Z11E1,2)/AZ] 12(x) (36)

and

H(X, Y, z) = [(izzHt,l– izlHt,z)/Ai]~l(~)

+ [(– ilzH,,l + kH,,2)/A~] ~2(-x)

+ [1/Ro(u22Hl,1 – u21H[,2)/’Ao] t“l(X)

+ [l/llo(– U12H1,1+ U11H1,2)/AU] ~2(X).

(37)

The quantity AU is given by

AU= Vllvzz – VIZV21= plpz/Ai. (38)

The last equality in (38) can be derived from (14). Starting

from (25) and (26) and using (36) and (37) and the

definition of Pij, it is found that P,j is given by

p,, = (1/2) JJ(%, x %,,) “ ds- (39)
s

The index a indicates that the fields in (39) represent some

kind of average. For conductor 1 they are given by

E a,l, I = .zI1 ( v22E,,1 – v21Et,2 ) 11,/Av

~,~., = (i22%l - i2~Ht,2)11J/Ai.
H (40)

For conductor 2 we have

E .,2,, = Z2, ( – V12J%.1 + V11J%,2)12JIAV

.,2,, =(- $2Hf,l + 41%J~2,/’Ai”
H (41)

In order to be able to compare (39) with either (34) or (35),

it is necessary to recast all quantities in (39) in terms of

quantities which follow directly from the numerical solu-

tion of a particular problem. To do so we again use I,J,

Z,l, E,O, ~, and H,O,, ~, which have already been defined,

and also’ ~, = Z, ,1,,. It can easily be shown that (40) and

(41) can b~rewrfit& as

a,l, j = ZIJ ( ~22Et0t.1E – ‘21Etot,2) ~lj/AV

..13, = (122%t,l - 12#tot,2)Il,/AI
H

E .,2,, = Z2, ( – ~12%t,l + ~@tot,2)~z,/A~

.,2,, = ( - ~12%t,l + w&2)~2J/A~.H

The quantity AI is defined in (23) and AV is defined

(38). Compared with (34) and (35), the actual fields

(42)

as in

used

here to calculate P,J are well-chosen combinations of the

fields of both modes, whereas in (34) and (35) only the

(partial) fields due to a certain mode are used. It is again

possible to prove that (42) is equivalent to (34) and (35) in

the quasi-TEM limit. The proof is beyond the scope of this

paper. The equalities in (24), which are a direct conse-

quence of the reciprocity, are automatically satisfied in our

model. These equalities will no longer be satisfied if one

starts from (34) for calculating the partial powers PZ,.

VI. EXTENSION OF THE CIRCUIT REPRESENTATION

TO LossY STRUCTURES

The main difference between the analysis for lossless

waveguides and lossy ones resides in the fact that the

power orthogonality (eq. (5)) is no longer satisfied and that

the cross-powers p,j defined by

J/(P,, = s E,,, X HZ,*, ) .dS, i,j=l,2 i#j (43)

have to be introduced. Similar reasoning leads to the

following relations between v,, and i,,:

vllil~ + v21iJ1 = pl

v12i1~ + v22i~2 = p2

vllill + V21iY2 = P12

v12i1~+ v22iJ = p21. (44)

These expressions replace the ones given by (13). As the

transversal currents can no longer be chosen to be real, we

have introduced the necessary complex conjugates. Solving

for v,, gives

v~~ = (P~i& - p,ziZ)/Ai*

v21 = (- p~ifi + p,zifl)/Ai*

v12 = (- pzi~ + p21i%)/Ai*

v22 = ( Pzifi - p21ifi)/Ai*. (45)
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Using

Zil = ZJv,j/iiJ

the values of Z,j now turn out to be

Zll = ( pli~Z1 – p12ifiZ1)/(ill Ai*)

Z12 = (– p2i&Z2 + p21i~Zz)/(i12 Ai * )

Z21 = ( – pli&Z1 + p12ifiZ1)/(i21Ai*)

Z22 = (p2ifiZ2 – p21i&Z2)/(i22 Ai * ).
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VII. EXTENSION OF THE Cmcur’r MODEL TO

(46) N COUPLED LINES

In this section we briefly deal with the extension of the

above CTL model to the case of the N fundamental modes

of a multiconductor waveguide. The equality between the

power propagated by the modes and the power propagated

in the CTL model leads to

~cN

(47) Z ‘,ji~=pj, J= I,., IV

The next step consists again in expressing all relevant

quantities in terms of values which directly follow from the

numerical solution of the problem. The relations which can

be used for that purpose are (21) and

2P,j/(~~~~Z) = P1,-zl\(i#,iki),

i,j, k=l,2 and i#j (48)

where the I,j and P, are defined as before and P,, is given

by

‘ij = 1/2// (‘tot, i x ‘t~t, j ), j+i. (49)
s

,=]
z=hl

“~ viji~=pj~, k+j andj, k=l,., N (54)
/=1

where

p,= jy(Etx I/i*) .d,$
s

pjk = Jj(Ejx H/). dS. (55)
s

As for two coupled lines, we introduce the current I,J,

which is the total longitudinal current flowing along con-

Using (21) and (48), (47) can be rewritten as ductor i at x = O due to eigenmcjde j. We also introduce

Zll = 2(Pll~ – P121J )/(111 AI*)
Pj, the power propagated by eigenmode j at x = O, and

P,,, the cross-power due to the electric field of mode j and

Z,, =2( – P,IJ + P21Q)/(112 Al”)
,..

the magnetic field of mode k, both taken at x = O. It can

Zzl = 2( – P1l& + P@ )/(12, Al*)
be shown that (54) is equivalent to

icN
ZZ2 = 2( Pz1fi – Pzlllj )/(122 AI*). (50)

x ~jIi~=pj, J=l,.., N

representation (25) and (26) for lossless lines
1=1

The CTL

finally becomes
~sN

~ Y#,Z = P’,, k+jandj, k=l, ..., N (56)
VI(X)

V*(X) =
_ ~.; ,1; [AlexP(- j&x)+ B~exp(j&x)] h ‘=’

12 1 w ere the voltages Vi, do not have a direct physical mean-

ing. Solving (56), the mathematical quantities ~j can be

+
1 determined, leading to the Zij values using Zi, = ~j\lij.

– 11~C2/12~ The final CTL model then becomes

. [A2exp(- j~,x)+ B,exp( j~,x)] (51)
j=w

K(x) = Z [(zij~ij)/(zrlj~lj)]
and j=l

II(x) l/zll

12(x) = – ~l;cl/(~2z21)

. [Alexp(- j~lx)- B1exp(j~lbx)]

1/%2
+

– wc2/(121z22)

. [A2exp(- j~2x)- B2exp(j~2x)]. (52)

The coefficients Cl and C2 are given by ,

c1 = [1 – (P121fl)/(P,11; )]/[1 – (P,21J)/(PJJ)]

C2 = [1 – (P2,1&)/(r211; )]/[1 – (P211J)/(r21J)] .

(53)

Cl and C2 introduce the correction of the CTL model in

the presence of losses while & and j3z are now complex

propagation constants.

~[A,exp(- jp,x)l+ Bjexp(j@Jx)]

~=N

ii(X) = ~ [~lj/(~ljzlj)]

1=1

“ [Aj exp ( - jfijx)l + Bj~~xp ( j&x)] . (5’7)

VIII. NUMERICAL EXAMPLE

In this section we consider the typical coupled rni-

crostrip configuration shown in IFig. 2. The value of k is

1 mm. This example is also discussed in [7]. Using the

space-domain Green’s function approach discussed in [16]

and [14], the eigenmode problem is solved. Numerical

calculation of the currents Iij, j =1,2, and of the powers

PI and P2, discussed in Section IV, leads to the impedances

Z,J (22). The solid lines in Fig. 21show these impedances.

The first index i refers to the conductor, while the second
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Fig. 2. A typical coupled microstrip configuration (h= 1 mm).

250

200

150

1Oc

5C

(Q)

~z,,--------------
z

12

L
21

z

I 11----.--------_-

ol--__G”z
0 1 23456

Fig. 3. Characteristic impedances as a function of the frequency for the

configuration of Fig. 2. Solid lines: our results. Dashed lines: results
from Jansen’s definition (eq. (34)).

index j refers to the mode. Mode 1 corresponds to

the quasi-odd mode while mode 2 corresponds to the

quasi-even mode. We then calculated the characteristic

impedances using the power distribution proposed by

Jansen (eq. (34)). The differences between Jansen’s ap-

proach and ours increase as a function of frequency.

Special care was taken to perform all calculations in dou-

ble precision arithmetic, avoiding the possibility of differ-

ent results being generated by numerical imprecision. For

Zlz and Zzl, however, the difference remains very small.

As a check on relation (24), which is a consequence of the

0.10

0.08

0.06

0.04

0,02

0.00

‘Y

f (GHz)

b

o 1 2 3456

Fig. 4. y as a function of the frequency using the power definition of
Jansen (eq. (34)) applied to the configuration of Fig. 2.

reciprocity y, we calculated the following variable:

y =11 – (-qz22)/(z12z21) I (58)

which must be zero. Fig. 4 shows y as a function of

frequency using Jansen’s definition (eq. (34)). This figure

clearly shows that the approach based on (34) yields a

correct circuit model only in the quasi-TEM limit.

IX. CONCLUSION

In this paper a new high-frequency model for N coupled

lossless and lossy waveguides was presented. A coupled

transmission line model of such structures, for both the

nondispersive and the dispersive case, was found based on

a power–current formulation of the impedances. To actu-

ally be able to determine these impedances, the full-wave

eigenmode problem for the waveguides under considera-

tion and for the N lowest eigenmodes must be solved. It

does not suffice to determine the propagation constants

belonging to each mode. One also needs the power distri-
bution over the total cross section of the waveguide be-

longing to each eigenmode. However, no supposition about

the power distribution over each separate conductor is

needed.

We have also shown, theoretically and by a typical

example, that our new approach coincides with previously

adopted approaches in the low-frequency limit but leads to

different circuit parameters for coupled waveguide struc-

tures at high frequencies. This will in turn influence the

values obtained in, e.g., crosstalk calculations, especially if

very high speed digital signals with a considerable high-

frequency content are involved.
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